Revisiting device_probe Implementations for USB Drivers

This article is supplementary to the book FreeBSD Device Drivers. It assumes you've read
up to and including Chapter 15: USB Drivers.

Looking Back

Recall from Chapter 15 that the function ulpt probe (), whichisthe device probe implementa-
tion for ulpt (4),is defined as follows:

static int
ulpt probe(device t dev)
{

Ostruct usb_attach arg *uaa = device get ivars(dev);

@®if (uaa->usb mode != USB MODE HOST)
return (ENXIO);

©®if ((uaa->info.bInterfaceClass == UICLASS PRINTER) &&
(uaa->info.bInterfaceSubClass == UISUBCLASS PRINTER) &&
((uaa->info.bInterfaceProtocol == UIPROTO PRINTER UNI) ||
(uaa->info.bInterfaceProtocol == UIPROTO PRINTER BI) ||
(uaa->info.bInterfaceProtocol == UIPROTO PRINTER 1284)))

return (BUS PROBE SPECIFIC);

return (ENXIO);

Listing 1: ulpt_probe() in FreeBSD 8.0

This function’s structure is typical for a USB driver’s device probe implementation in FreeBSD 8.0.The
following paragraph, which is taken from FreeBSD Device Drivers, describes this function.

ulpt probe () begins by @ ensuring that the USB host controller is in host mode, which is needed to
initiate data transfers. Then ulpt probe () © determines whether dev is a USB printer. Note that @
struct usb attach argcontains dev’s instance variables.

Moving Forward

Starting with FreeBSD 8.0, device probe implementations for USB drivers can be structured differ-
ently than what's shown in Listing 1. In FreeBSD 8.3, ulpt probe () looks like this:

static const OSTRUCT_USB_HOST_ID ulpt devs[] = {
/* Unidirectional USB printer. */
{ USB_IFACE CLASS (UICLASS PRINTER),
USB IFACE SUBCLASS (UISUBCLASS PRINTER),
USB_IFACE_PROTOCOL (UIPROTO PRINTER UNI) },

Revisiting device_probe Implementations for USB Drivers Joseph Kong January 2,2013 1

i

/* Bidirectional USB printer. */

{ USB_IFACE CLASS(UICLASS PRINTER),
USB IFACE SUBCLASS (UISUBCLASS PRINTER),
USB_IFACE PROTOCOL (UIPROTO PRINTER BI) },

/* 1284 USB printer. */

{ USB_IFACE CLASS(UICLASS PRINTER),
USB IFACE SUBCLASS (UISUBCLASS PRINTER),
USB_IFACE PROTOCOL (UIPROTO PRINTER 1284) },

static int
ulpt probe (device t dev)

{

struct usb_attach arg *uaa = device get ivars(dev);
int error;

if (uvaa->usb mode != USB MODE HOST)
return (ENXIO);

error = @usbd lookup id by uaa (Oulpt devs, sizeof (ulpt devs), @uaa);

if (error)
return (error);

return (BUS_PROBE GENERIC);

Listing 2: ulpt_probe() in FreeBSD 8.3

The difference between this version of ulpt probe () and the one shown in Listing 1 is that here @
usbd lookup id by uaa () isused to determine whether dev is a USB printer instead of doing it
“by hand”

The function usbd lookup id by uaa () takesan @ array of usb device id structures, whichis
defined using the ®@ STRUCT USB HOST ID macro, and returns O if any element matches the data in a
® usb_attach arg structure (which should contain dev’s instance variables).

The benefit of using usbd lookup id by uaa () instead of doing it by hand is that it automatically

exports the device’s ID to /usr/src/tools/tools/bus_autoconf/ and /etc/devd/usb.conf.

Revisiting device_probe Implementations for USB Drivers Joseph Kong January 2,2013

2

